
JOURNAL OF APPROXIMATION THEORY 42, 245-256 (1984)

The Distance of a Subspace of Rm from Its Axes
and n-Widths of Octahedra

A VRAHAM A. MELKMAN

Department of Mathematics and Computer Science, Ben-Gurion University of the Negev,
Beer Sheva, Israel

Communicated by Oved Shisha

Received August 16,1983

1. INTRODUCTION

It will be evident throughout that this paper was stimulated by the recent
work of Pinkus [8] on n-widths of diagonal operators from l~ to l;. Here we
pick up one of his topics, the case r = 1. In addition to extending known
results as much as possible, our aim is to unify and emphasize the II flavor.
This attempt leads naturally to a consideration of the necessary and
sufficient conditions for the existence of an n-dimensional subspace X n of R m

(m ~ (0) with given distances llj from the principal axes t/:

(1.1 )

In Section 2 precise answers are given for some values of p and n, and
estimates for other values; the essence of the case p = 2 is taken from
Sofman [11]. Section 3 shows how to use these results to obtain the
Kolmogorov n-widths

(1.2)

with D a positive diagonal matrix.
Many of these results have appeared before [1, 8, 9, 11, 12]; our main

new contributions are a sharp inequality, the identification of optimal
subspaces, and the method of derivation. Of special interest is the fact, noted
by Pinkus [8] that if the first min in (1.2) is taken over X n c em then
~ < d~ can happen even though D operates on R m. The results of Sections 2
and 3, however, do not depend on this distinction and therefore we do not
mention this point again until we turn to it specifically in Section 4. There
we treat the important case D = I primarily with an eye toward obtaining
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exact values for the n-widths. In particular we make the conjecture that the
asymptotic behavior for large m and n such that m2/n P ~ 0 is

p> 2. (1.3)

Interestingly enough, the substantiation of this conjecture is linked to the
combinatorial problem of equiangular lines investigated by Lemmens, Van
Lint, and Seidel [4,5].

2. THE DISTANCE OF AN n-DIMENSIONAL SUBSPACE OF R m FROM ITS AXES

PROBLEM 1. Given m reals {11i!7', 0 ~ 11; ~ 1, find n-dimensional
subspaces X n of R m such that

i= l,... ,m.

In the solution of this problem we will make frequent use of

( ;) IYilE p e ,Xn =max-
II
-

II
-,

ylX. Y p'

I 1
-+-= 1,
P p'

(2.1 )

a familiar consequence of the Hahn-Banach theorem.

THEOREM 2.1. Problem 1 has a solution for p = 1, n < m ~ ro, if and
only if l1i < I for at most n indices i.

Proof Suppose that at most n of the l1i do not equal 1, say i = 1,..., k,
k~n. Using (2.1) it is easy to construct a subspace Xn of R n + 1 with
distances 11i' i = 1,..., n + 1, namely take Xn orthogonal to the vector
(111"'" I1n+l)' Viewing Xn as a subspace of R m by adding zero coordinates
yields the desired subspace since 11 n +i = 1.

The converse follows, again on the basis of (2.1), from the statement (cf.
Pietsch [9]): given X ncR m there exists Y E R m, y..L X n such that
max IYil = 1 and IYil < 1 for at most n indices i. Indeed Y may be taken to
be any extreme point of the closed convex set L = {x E R m Illxll oo ~ 1,
x..L X n }. For if y is such a point but, say, IYil < 1, i = 1,..., n + 1 then taking
gEspan{ei}~+l and g..LXn we have Y± egEL for small enough e
contradicting the extreme point property of y.
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THEOREM 2.2. Problem 1 has a solution for p = 2, n <m ~ 00 if and
only if

m

L (1 -17D = n.
i~1

(2.2)

Proof This theorem was essentially proven by Sofman [11]. For
completeness we give the proof. Let {x i }7 be a orthonormal basis for X n •

Then

the condition is therefore necessary.
The converse is proven by induction on n, the case n = 1 being immediate

from (2.3). Assume then that n> 1 and for simplicity that 171 = min 17i (if
m = 00, 17i -+i .... oo 1). Choose g;}~-I such that

i= 2,..., m,
m

I (1- ~D = n - 1
i= 2

which is possible since L~=2 (1- 17;) = n - 1 + 17i >n - 1. Now by the
induction hypothesis there exists X n_l such that E2(e\Xn_I)=~k'

k = 2,..., m, E2(e l, X n_l) = 1. Add e l to X n_1 to obtain X n, for which
~1=E2(el,Xn)=O and L~I(1-~D=n. The proof is completed by
showing how to rotate X n so as to move step by step from g;}~ to {17;}~.

Let x(a) be any of the basis vectors of X n after a rotation by a in the
1 - k plane

x(a)1 = XI cos a - xk sin a, x(ah = Xl sin a +xkcos a

with all other coordinates unchanged. Thus, in obvious notation (2.3) shows
~i(a)=~i' i-=t-I, k while ~i(a)+~Z(a)=~i+~z. Moreover since
~k(O) = ~k' ~k(n/2) =~]l and

the continuity of ~k(a) implies there is a value of a for which ~k(a) = 17k' At
the same time 17i~~i(a), i=2,.. ,m, and L~I (1-~i(a)2)=n continues to
hold so that ';I(a) is still the smallest and the process may be repeated for all
coordinates.

THEOREM 2.3. (a) Define

l xP p'IPJ -lip'
J;(x) = . I + ( I _ xP ) ,

640/42/3-4

I 1
-+-=1, l<p<oo.p pi
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Then

(b)
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(2.4)

(2.5)

Clearly one must have ({J = 0 and fJ < lXII-I. Noting that fp(x) is monotone
decreasing in x and using (2.1) one easily computes

E ( I X)' (I:~=llxiIP)I/p
P e; n = mm [liP' ("m I IPVJ'/Pjl/P'

XEXn XI + L.i=l Xi J

by (2.1).

(b). Proceeding as in (a), let Ix11 = maxi>llxil. Then min", Ile l - axlloo
is achieved for an a such that 11- aXil = lallx11, i.e., lal = [lxll + Ix1Il- l.

COROLLARY 2.4. The following are necessary and sufficient conditions
for the existence of a solution ofproblem 1:

m

(a) 1 <p < 00, n=1<m~00: L [fp,(r/;W = 1. (2.6)
i=1

(b)p = 00, n=l<m~oo: ~~( [17i + 17j l = 1. (2.7)
I J

m

(c) 1 <p~ 00, n=m-1<00: L (1 -17f') = m - 1. (2.8)
i=l

Proof (c) Referring to (2.1) we have 17i=maxY .lX
m
_t!Yil/llyllp '=

Iyillll Yllp " Thus (2.8) holds and, conversely, given 17i take
Xm_ll. (171"'" 17m)'
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(a) Note thatfp,(fp(x)) = x. Hence (2.6) follows from the theorem and
(2.8). Conversely, given '1i satisfying (2.6) choose for XI the span of
x = U;,,('1I), ...,f;A'1m))'

(b) If suplxil=lxl l and sUPi>llxil=lx2 1 (e.g., m<oo) then from
(2.5) one gets (2.7) with i = I, j = 2. The reasoning for m = 00 is analogous.

Since it seems difficult to obtain any further precise results, we turn to
some inequalities.

LEMMA 2.5. If I ~ r ~p ~ s ~ 00 then

{l + [Er(ek,xn)-r' _1)P'(r'(m_1)1-(P'(r')}-1(P' ~Ep(ek,Xn)

~ {l + [Es(e\Xn)-S' - l)p'IS'(m - l)I-(P'(S')} -I(p'. (2.9)

Proof Inequality (2.9) is based on the simple inequality

p~r.

Thus with lip' = 1 - (lip),

( k )P' IxklP' IxklP'
Ep e ,Xn = max -IIliP' ~ max liP' ('\' I Ir')p'/r'( _ l)I-(p'/r')'

x.lXn X p' x.lXn xk + '-J*k x j m

Inequality (2.9) follows since the right-hand side is monotone increasing in
a = Ixkl (L:J# Ixjlr')-l/r' and maxx.lXn a = Er(e\Xn).

Because an explicit condition is available when p = 2 this estimate will be
particularly useful when either r or s are 2. A very simple estimate is based
directly on (2.1).

LEMMA 2.6. Let 1 ~ i l < ... < in+ I ~ m ~ 00. Then

(2.10)

Proof Assume for simplicity ik = k, k = 1,... , n + 1. Clearly there is a
y 1. X n of the form y = L:~~: ake\ 1 = II YI\~: = L:~~: \ak\P'. From (2.1) we
have Ep(e\Xn) ~ lakl.
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3. n-WIDTHs OF DIAGONAL OPERATORS FROM IT TO I';

We are interested in determining the n-widths and the corresponding
optimal subspaces for approximating a diagonal operator
D = diag(Dl"'" Dm), where we assume D I ';::. D 2 ';::. ••• ';::. Dm> 0, though this
could be modified if m = 00. It is well known, and we reprove it shortly, that
in the case at hand the Kolmogorov n-width equals the linear n-width defined
as

(3.1 )

where P is any matrix of dimensions m X m; i.e., it is sufficient to consider
linear approximants rather than best ones. Denote

(3.2)

LEMMA 3.1 (Hutton, Morrell, and Retherford [1 D.

dn(D; IT, I';) = 6n(D; IT, I';) = min. max Ep(DII, X n). (3.3)
x. J=I •...• m

Proof Since ±t!,j = 1,... , m, are the extreme points of Ilxll l ~ 1 we have

= min . max Ep(DII, X n).
x. J=I •...•m

Also clearly dn~ 6n. On the other hand, if X n is an optimal subspace,
yi E X n a best approximant to DII, then for any x, x = L:j= I ajt!,
L:j=1 lajl ~ 1,

~i~ IIDx-yllp~ Ilj~1 aj(DII-yi)L ~j~llajIPj~ i=rr~~,mPi'

so that the approximation may indeed prodeed linearly.
To connect these notions with the preceding section we observe

The conditions on Ep(e j
, X n) formulated in Section 2 may therefore be trans

lated directly into conditions on Pj and used to determine n-widths.

THEOREM 3.2.

n < m ~ 00, (3.5)
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and a subspace is optimal if and only if it is spanned by W} 7,
bi = Dei + LUi aje1 with ~*i Iajl ~ Dn+I'

Proof From Theorem 2.1 piDj < 1 for at most n indices j and hence
maxi=I .....mPi~Dn+I. On the other hand clearly IIDei-bill~Dn+l' i~n.
For the converse let x be the best approximant to Del. In particular,

This minimum cannot be achieved for a = 0 hence it must be at

l=a=Dl/lxll·

Remark. This is but a particular instance of dn(D; I;, I;) = Dn+I (cf.
Pinkus [8 D.

The remaining precise results are given in the next theorem. Denote
E k = span{ei }1·

THEOREM 3.3. (a) (Sofman [11], Hutton, Morrell, and Rutherford [1 D.
For each n <m ~ 00 there exists a unique k such that

(3.6)

and all optimal subspaces lie in Ek' In fact k is the index I which yields

(
1- n ) 1/2

max 1 2
l;>n+1 Li=IDj

(3.7)

(b) For each p < 00, m ~ 00 there exist a unique p and k such that

k [ ( (D i) p' ) - (p - I) ] - I _L 1+ - -1 -1.
i=1 P

(3.8)

With this p and k, dl(D; I'{', I;) = p and all optimal subspaces are contained
in E k•

(c) (Pinkus [8 D.

dl(D; I'{', 1':::0) = (D I I + D 2
1)-I, m~ 00, (3.9)

and the span of x = (Dl' x 2'..., x m) is an optimal subspace if and only if
x2=D2~Xi' i~2.
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(d) (Pinkus [8]). For all p ~ 00, m < 00,

(3.10)

and the optimal subspaces are orthogonal to (±Di l
, ... , ±D;;;I) for some

choice of signs.

Proof In the cases p = 2; n = 1; n = m - 1, Theorem 2.2 and
Corollary 2.4 yield necessary and sufficient conditions for the existence of X n

with Ep(Dei, X n ) = Pj' of the form

)~ (~)-f-- fn.p D. - n,
1=1 1

where fl.p(x)=fp(x), fn.z(x)=fix) = l-x2
, and fm_l.p(X) = l-x

p
'. In

each casefn,p(x) is monotone decreasing andf(l) = 0,j(0) = 1. This charac
terization suffices to show that if P = minx" maxi= I .....m Pi then
pi=min(Di,p), i=I,...,m. Indeed, since clearly Pi~P, Pi~Di' suppose
Pj < min(p, DJ Then for b >0 such that Pj +b < min(p, Dj) the
monotonicity off yields the existence of f: >0 for which

Now Theorem 2.2 and Corollary 2.4 ensure the existence of X n with these
distances from the axes, contradicting the supposed optimality of p. Since
f(l) = 0 it follows that if Dk + 1 ~ P < D k then

Conversely, because 'L..f= dn,p(min(p, DJ/DJ is a monotone decreasing
function of p, this equation determines p uniquely. Note that one must have
k> n because fl,p/DJ ~ 1. These remarks establish (3.8), (3.10). In case
p = 2 we get the existence of a unique k such that

establishing (3.6). To derive (3.7) we have to show that for all I

1- 1
'L..~ D. 2 ~p2

1=1 1

or
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This follows immediately from D I ~ .•. ~ Dk ~ P~ Dk + I ~ ... ~ Dm and
L~=I [1 - (PID I)2] = n.

As for the fact that the optimal subspace X: is contained in E k
, recall that

we proved Ep(Dt!, Xn = Dj , j > k. This implies X: -l t! since

( _i X*)-D Ixjl
E p D~, n - j ma~ -11-11-

xlXn X p'

and this can equal D j only if t! -l X: .
Turning finally to (c) we have from Theorem 2.3(b) and arguments similar

to the previous ones that

1 = P ~Jt:l (D j I +Dj- I) = p(D ~ I +D 2" I).
lrj

Now PI/D I = D2/(D I + D2), P21D2= DI/(DI + D2) with XI = D I are possible
only if X2= D2~ XI' i > 2. Conversely Theorem 2.3(b) shows that if XI ~ D2
then the value PI such that PIDjl=DI(DI +xJ-I~DI(DI+D2) is the
distance to Del.

In all these cases if D k + I ~ dn <D k then there exists an optimal subspace,
contained in E\ equidistant from the first k axes, with distance dn • It seems
reasonable to conjecture that this is true in general. It is clear that in any
case the optimal subspace must be equidistant from at least n + 1 axes.

It is possible to use Lemmas 2.5, 2.6 to obtain inequalities for the n
widths. We mention

PROPOSITION 3.4. Denote

Then

d=max
(Ijl [

n+1 ]-I/P' [n+1 ]-I/P'
" D;-P' =" D;-P'
~ lk L I
k=1 /=1

(3.11 )

(3.12)d ~ dn(D; I~, I';) ~ max(D n + 2 , d).

In particular if d ~ Dn +2 then equality prevails.

Proof The lower bound follows from Lemma 2.6. To show the upper
bound choose X; = span{en + 2

, ... , em, u} with u = (D~ I,... , D;;;'l' 0,..., 0).
Then from (2.1) we have

1~i~n+1,

n +2~i~m,

and therefore maxEp(De,Xn)=max(d,Dn+ 2 ). See Pinkus [8] for a
generalization of this result.
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4. n-WIDTHS OF OCTAHEDRA

We now specialize to the case D = I. Summarizing our previous results we
have

dn(I; IT, IT) = 1,

dn(I; IT, I'{') = \/1 - (nlm) ,

d1(I;IT,I';)= [1 +(m-1)-l/(P~l)l-(l-(lIP»,

d (I' 1m Im)=m~(I-(IIP»)
m-l , I' P ,

1~ n < m ~ ro,

1~ n <m ~ ro,

1 <m ~ ro, p ~ ro,

p ~ roo (4.1)

On the basis of the explicit result for 12 , Lemma 2.5 yields the estimate

d (I' 1m Im)~ II + ( vn Vl- (11m) )P'! -lip'
n , I' P '" (1)I/P V 'm- 1-(nlm)

p ~ 2, (4.2)

lip + lip' = 1 of which Pinkus [8] gives the case p = roo This yields
asymptotics for large m and large n as follows

(a) dn(I; IT, I:)~ 1 if m -+ ro and nPlm 2
-+ 0,2 <p < ro;

(b) dn(I;IT,I:)~ml/pvr=alvn if m-+ro and nPlm 2 -+ro,
2 <p ~ ro, where a = limm ....oo(nlm), 2 <p ~ roo

Note that there is equality in (4.2) for p = 2 and all n, and for n = 1,
m - 1, and all p. In the remainder of this section we investigate the sharpness
of the exact and asymptotic lower bounds.

An examination of the proof of Lemma 2.5, as performed in [7], reveals
the following conditions for equality to hold in (4.2).

THEOREM 4.1. The lower bound (4.2) is attained for p > 2 if and only if
there exists a rank n projection P such that

n
Pkk =-,

m
2 ( n ) n

IPikl = I- m m(m-l)' i *- k; i, k = 1,..., m.

In that case, X n= PR m is an optimal subspace for dn(I; IT, I';) all p ~ 2,
while X* is optimalfor dm_n(I; IT; I';),p ~ 2 again with equality in (4.2).

As a result of this theorem the exact lower bound cannot be attained for
all values of nand m. Moreover these restrictions may change when the
space R m is embedded in em, e.g., with n = 2 there is equality for e 4 but not
for R\ as pointed out by Pinkus [8]. More results on conditions and cases of
equality are presented in [7]. Here we conclude by bringing evidence to
support the conjecture that the asymptotic lower bound (b) is sharp.
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Conjecture. For m and n such that limm-->oo mn-p
/
2 = 0,

255

2<p<.oo,

where a = limm-->oo nlm.

Evidence. (1) n ~ m2/3. Lemmens and Seidel [4, Theorem 3.2] prove
that (4.2) is achieved for n = ml«m - 1)1/3 + 1) and m = e 1 + 1, k prime, I
arbitrary.

(2) For, n = ym, Maiorov [6], see [7], shows

dn(I; IT , I~) ~ llyn·

(3) For n = 1m, m = 2k
-

I (2 k
- 1),

m l / p

dn(I; IT, I;) ~ ym y0]3.

Similarly for n = ~m, m = 2k
-

I (2 k + 1),

Seidel [10], see [7].

(4) For n= !m, there is equality already in (4.2) if there exists a
symmetric conference matrix, see [7], or, in the complex case, if there exists
an m X m real skew Hadamard matrix S. To prove the latter statement,
given such an S (which has entries ±1, SST = mI, S + ST = 2I) form
A = 1 - i(m _1)-1/2 I + i(m _1)-1/2 S. Then rank A = n since A +.4 = 2I
and thus rank A + rank.4~ 2n, while AA T = 0 implies rank A <. n. The
matrix A has all the properties required by Theorem 4.1.
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